
Chapter 5

Connecting the Testbench and Design

5.1 Introduction
There are several steps needed to verify a design: generate stimulus, cap-

ture responses, determine correctness, and measure progress. But first, you
need the proper testbench, connected to the design.

Your testbench wraps around the design, sending in stimulus and captur-
ing the design’s response. The testbench forms the “real world” around the
design, mimicking the entire environment. For example, a processor model
needs to connect to various busses and devices, which are modeled in the test-
bench as bus functional models. A networking device connects to multiple
input and output data streams that are modeled based on standard protocols. A
video chip connects to buses that send in commands, and then forms images
that are written into memory models. The key concept is that the testbench
simulates everything not in the design under test.
Figure 5-1 The testbench – design environment

Your testbench needs a higher-level way to communicate with the design
than Verilog’s ports and the error-prone pages of connections. You need a
robust way to describe the timing so that synchronous signals are always
driven and sampled at the correct time and all interactions are free of the race
conditions so common to Verilog models.

5.2 Separating the Testbench and Design
In an ideal world, all projects have two separate groups: one to create the

design and one to verify it. In the real world, limited budgets may require you
to wear both hats. Each team has its own set of specialized skills, such as cre-
ating synthesizable RTL code, or figuring out new ways to find bugs in the
design. These two groups each read the original design specification and
make their own interpretations. The designer has to create code that meets that

Testbench

Design 
Under
Test

inputs outputs

Testbench

Design 
Under
Test

inputs outputs


